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ABSTRACT 

7 Suppose  the basic shape of  the cumulative failure  (hazard)   ' 
function has been identified for a certain component, and y 

that  an unknown parameter   (%) for a new production run of 
V^ similar components is to be estimated.     In particular, 

^ötippose that the failure function is of proportional type, 
R(x)  "L^QCx)   , where    Q    is the known shape function,  and 

x- >       that  ^6)   is sampled from a prior gamma density.    By using 
[ffjlfß'*'    a new statittic, called the total    Q    on test  (TQT),   it  is 

possible to perform Bayesian updating during a variety of 
lifetime  testing programs  in a manner similar to total  time 
on test plots.    This statistic can also be used with com- 
plete  lifetime data, extending over several product  runs, 
to identify the failure form    Q  ,  and to estimate the gamma 
hyperparameters.    Extensions  include the use of several 
TQT statistics to estimate the  relative strength of compet- 
ing hazard functions. 

\ 



BAYESIAN LIFE TESTING USING THE TOTAL    Q    ON TEST 

by 

William S.   Jewell 

1.     INTRODUCTION 

Suppose that the random lifetime,     xf , of a certain component  type 

has a distribution function    P(x   |   0)   , where    6    is an unknown parameter 

that may vary from one production run to another, but is assumed constant 

within each  run.    We assume a prior distribution of interbatch variation, 

P(e)   ,   is  available. 

There are two main types of estimation problems within the  Bayeslan 

framework: 

(1) Model identification,  in which the forms of    P(x   |  6)    and 

P(e)    are to be Inferred from previous production runs; 

(2) Parameter estimation,   In which selected components  from a 

given batch are operated under normal or accelerated test 

conditions to infer the particular value of    0    for that 

batch. 

These  two problems are interrelated,   since the choice of model  is often 

made to simplify parameter estimation,   and the success of Bayeslan up- 

dating depends upon how close the assumed models are to the  true ones. 

However,  a  third factor which Influences both of these tasks,  and which 

is often overlooked,  is the test design. 

In the following, we shall examine Bayeslan estimation under normal, 

but incomplete test conditions. We first show that a convenient modeling 

family is  the proportional hazard class   (with generalization to competing 

,     i     iiiiiiiiiaiilfilliMiKitiattJiiMlabillilii    t   niaMfcalhiaiifliM 
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hazard families), and tiu. , with a carCaln natural conjugate prior, 

parameter estimation Is easily carried out through a test statistic 

we call "total Q on test," a generalization of the concept of "total 

time on test." Furthermore, model Identification can be simplified 

by using special total Q on test plots of the sample data. 



■ 
2.     1NC0MPLETK LIFE TESTS 

I ■ 

The classical  manner In which lifetime distributions are  inferred 

is to place    N    components,  assumed to have the same values of    ft   ,   in a 

test environment which matches normal  operating conditions for    T    hours, 

or  until all  components have all   failed,   if earlier.    Normally,  the 

economics of  testing are such that  the  (random) number which have  failed, 

~(Tj   ,   is much less  than    N  .     (See,  e.g.,   [1]  where  this scheme  is called a 

truncated data test,  and [5], where  It  is  a Type I censored test).    The 

outcomes of  the  incomplete  test  can be described  in terms of  a data set 

V    of  the ordered random lifetimes    {X^.M/    anc* t^e random    C(T)     as 

follows; 

(2.1) 

V " j^ltN " xl] - [*2:N E X2] t '" <- [*C:N " xc] - T ; 

•   x > T( . XN:N I XC+1:N > T   ; 

If    p(x   ]   6)    and    Pc(x  |   0)    are  the density and complementary   (tail) 

distribution,   respectively,  corresponding to    P(x  |   6)   ,   then the  likelihood 

of  the data  set    V    is: 

L(0  |   6)  - p(x1,x2,   ...,  xN  ;  C(T)   |   8) 

Ml C r -iN"C       N 

(2.2) -     "' ,   n   p(x.  I 6)LPC(T I e)J n    6(x. - T) 
IN-C.J   lml 1 i.c+1 1 

(x.       x, <   •••   < x     < T) 

-•■ 

where  unit   impulse  (degenerate)  densities    6(x)    are used for convenience 

N 
I 

C-0 
so  that       I   JjiiV  |   e)dx1dx2   •••   dxN =   1 
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An alternate testing scheme (called a censored data test In  [1]  and 

a Type II censored test In  [5]),  fixes the number of failures,    C  ,  in 

advance, and thus the duration of the test is a random variable, 

T(C) - x        .    The likelihood (2.2) becomes a density 

UV  I   6) - pCx^.Xj,   .•.,  Xj^   |   6) 

C N-C      N 
(2.3) ■Är^^i' e)[pC(xcle)]    1 

e)|        n    6(x, - xr) 
c+i      1      c 

(Xj^ < x2 <   •••   < xc) 

with   jfi(P  I  e)dx ,dx2  ••• dxN - 1  . 

H   I 

EÜ      I 



3.     PROPORTIONAL HAZA1U) FAMILY:    TOTAL    Q    ON TEST AND MAXIMUM 
LIKELIHOOD ESTIMATORS 

Although  (2.2;   and  (2.3)  could,   In principle,  be calculated for any 

underlying diatrlbution,   it is desirable to pick a  family which is both 

useful  from a modeling point of view,  and simple computationally. 

The Koopman-Pltman-Darmois exponential  family has extremely useful proper- 

ties in regular Bayeslan forecasting  [2]   [4];  but,   it has no convenient 

integral  form and does not seem useful in life testing applications. 

However,   every complementary distribution function can be written 

c P  (x  I  6)  = exp(-R(x  1   6))   , where    R(x  |   6)     is  the aumulutive failure 

(hazard) fmation,   given    6  ; a convenient way to parametrize this 

form is to suppose  that    R(x  |  6) ■ eQ(x)   .     Since    Q(x)    is a monotone 

nondecreaslng function which contain all of the failure shape information 

(thus preserving the properties of IFR,   IFRA,  etc.   [1]   for all    6), we 

could call it the unit- or prototype-failure function,  and refer to the 

density and cumulative distributions: 

(3.1) PC(x  1   6)  = e-eQ(x)     ;    P(x  |  6)  - eq(x)e-eQ(x)   ; 

as the proportional hazard family    (q(x) ■ dQ(x)/dx)   .    We note the 

following properties: 

(a) The  family  Includes the exponential, Weibull with given shape 

parameter,  and Gumbel distributions; 

(b) A random lifetime,    \ , with distribution  (3.1) and    6    an 

integer can be Interpreted as    x B mln(y*, ,y",,,   ...,7.)   , 
1 ^      ö 

where PrCy > y) - exp(-Q(y)) , for all i = 1,2, ..., 9 , 

which suggests a certain physical failure model for this family; 



(c)  It may  be reasonable that production of different lots 

under varying conditions maintains the same shape for 

the hazard function and changes only the relative Intensity 

of failures. 

Most Importantly, this family greatly simplifies estimation In life- 

testing, since the likelihood (2.2) becomes 

pCx^Xj, ..., xN ; C I 6) 

„,    C        N ( _ -e[TQT(x ,x2, ...,xr ; C)]| 

(Xj^ < x2 < ••• < xc) 

where ?o call 

C 
(3.3)    TQTCx-.x, xr ; C - C(T)) = I    Q(x ) + (N-C)Q(T) 

1  ^      C 1-1   1 

the total    Q    on test,  a statistic of varying dimensions that Is a 

natural generalization of the total time on test concept for the ex- 

ponential density,  Q(x) ■= x [1] . Corresponding to (2.3) and the second 

testing scheme, we obtain a similar, but fixed-dimensional statistic: 

C 
(3.A)    TQKx^, .... xc) =• I    Q(xi) + (N-C)Q(xc) 

and a likelihood similar to (3.2). 

Since only the term in braces in (3<2) is a function of 6 , it is 

easy to show that the maximum likelihood estimators of 6 and 1/6 are; 



(3.5) r1 - MLEUer1}  - 1SU& ;   6  - MLE{0} -       C 
TQT(P) 

which coincides with known results for the exponential density under the 

two tests  [1]   [5]. 



4.    OTHER LIFE TESTS 

A variety of other life testing schemes also use appropriate generali- 

zations of the total    Q    on test statistic.    For example, If   N   units 

are placed on test,  but a set of fixed, but possibly different  test durations 

{T }    are given for all units, then we observe    % - minfx.,!.}   .    The 

likelihood of this unordered data is: 

p(y1.y2. •••. yN J c I 9) 

(4.1) -     n    q(y.)     n     6(y,-T.)[ 
leC        i   UC       J      J  ( 

c -TQT(y1,y2 yN ; C)j 

(0 < y1 < ») 

where C - {1 | y < T , 1 - 1,2, ..., N} and C - ||C|| . The total Q 

on test is 

N 
(4.2) TQT(y1,y, /„ ! 0 - I    Q(y.) " I    Q(XJ + I   Q(T4) • 

12      N      1-1   i   leC   i   itC       i 

This is called testing with withdrawals in [1]. 

Another testing procedure might be called renewal testing. Suppose 

a component is started on a single test stand at time zero; after the 

first failure, a new item is started; and so on, until the procedure 

terminates at a fixed time T , with the  (C + 1)   item still operative. 

The likelihood associated with V  ■ ^x. ■ x., S« " x2» ••• ♦ ^c " XC • 

%** T" J^lj i,,Juflt: 

C      ( r -TQT(x ,x2, ..., xc ; C)) 
(4.3) p(x1,x2, ...,xc ; C | 6) - n q(x1)Je e ^    > 



c 
over the simplex 0 < I    x < T , with total Q on test 

1-1 

(4.4) TQT(x1.x2 xc ; C) - I    QixJ  + QIT - J xj . 

The generalization to stopping with the    C        failure,  multiple test 

stands, and other combined censoring-truncating-withdrawal-renewal 

test  schemes should now be obvious. 

In fact, with the proportional hazard family it is clear that, no 

matter what  the  test set-up,  one needs only to monitor the actual  (complete 

or Incomplete)  lifetimes    {y  }    for each  item,  and the   (fixed or stochastic) 

number,    C   ,  of completed tests.    Then    TQT -       J      Q(y.,)    and  (3.5)  and 
all 1 

the Bayesian formulae of the next section always hold. 
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5. BAYESIAN UPDATING UNDER LIFE TESTING; MIXED DISTRIBUTIONS 

In a Bayeslan formulation, we do not use (3.5) directly because 

we have prior information on the possible values of 6 , perhaps through 

cumulative data on previous production runs, or, if one is so persuaded, 

from sampling expert opinion. To simplify the application of Bayes' 

law, it is convenient to pick a natural oonjugate prior,  whose form 

matches that in the braces in (3.2); this is Just the gamma density 

c -i -eq 
Q (Q 6) 0 e  0 

(5.1) p(e) -   0
r(c )     (0 < e < ») 

with hyperparameters    C    ,   Q   •    The usefulness of  (5.1)  in modeling unimodal 

densities over    [0,°°)     is well-known.    It  is easy to see that Bayes' 

law then gives a posterior-to-data density of    6   , p(6   |  P)   , which is 

also gamma,  but with updated hyperparameters: 

C    ^ C    + C  , 
(5.2) 0        0 

Q    * Q    + TQT(P)   . o        o 

In place of the classical estimators  (3.5), we have the posterior-to-data 

expectations 

(5.3) E{(?)'1 | V) ' (i-z^ECT1) + z1e"1(p) 

(5.4) [E{e I P}]"1 - (i-z,)[E{e}]"1 + Z-le(P)]"1 J2/1,-IUJJ "2 

with "credibility factors" 

(5.5) Z.   - C/(C    - 1 + C)     ;    Z, - C/(C    + C)   . 10 z o 
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Thli means chat If the teat gives a large number of complete observations, 

relative to C , then the Bayeslan and MLE estimators coincide. However, 

for relatively Incomplete tests, more weight Is given the prior expecta- 

tions, EOT  } or EdT) . Linear mixing formulae of this type are well- 

known in Bayeslan forecasting [2] [3] [4]. 

It is also of interest to examine the form of the mixed density  of 

lifetimes, obtained by averaging over many batches.  From (3.1) and (5.1) 

-C 
PC(x) - £Pc(x | 6) - {l+[Q(x)/Qo]} 

0 ; 

<5-6> -C -1 
p(x) - [Coq(x) | Qo]{l + [Q(x)/Qo]} 

0 

which ia a generalization of a shifted Pareto.  We see that if the prototype 

failure function is Gurobel, we get exponential tails (for large x) in the 

mixed distribution, while if the underlying failures are Wei bull, we get the 

"more dangerous" algebraic tails.  If life test data V    are drawn from a 

batch with fixed 6 ■ 6. , it follows that the forecast distribution for 

the remaining components from this batch, P (x | P) , is of form (5.6) with 

updated parameters (5.2).  Furthermore, one can show that if the test data set 

V    is large enough, PC(x | P)  approaches exp{-eiQ(x)} , the true dis- 

tribution for this batch, with probability one. 

Generally, the failure function of the mixed distribution increases 

less rapidly than that of the prototype hazard: 

(5.7)     RMIXED
(X)

 " ' ln[pC(x)1 " Co ln(1 + W<x>/Qo)] 

and may be DFR even if q(x)  is increasing.  (5.7) should not be confused 

with the average behavior of the individual failure functions: 

■l"1" — 



(5.8) R(x) ■ ER(x | 6) ■ C Q(x)/Q„ . o    o 

which always has the shape Q(x) . 

12 
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6. TOTAL Q ON TEST TRANSFORM 

We turn now to the problem of Identifying the prototype failure 

function, Q(x) , and the hyperparaneteri C , Qo . First, let us examine 

the effect of plotting TQT with a Q which Is not the necessarily correct 

one. 

Paralleling Barlow and Campo [1], we define the total    Q    on teat 

tronaform  (TQTT) of any distribution F with respect to Q as: 

F'^Ct) 

(6.1)  H'^t) - H^Q(t) -/ 
[1 - F(u)]dQ(u)     t e [0.1] 

This awkward notation is used because H-,-.  (the inverse of 

a distribution on [0,y] , where 

^) 
Is 

F'V) 
(6.2) U - H^d) 

/ 
F^u^u) < » , 

and is the mean of F if Q(x) - x , the usual total time on test transform. 

Now if Fc(x) - exp{-6Q(x)} , it is easy to verify that 

(6.3) H'1(t) - t/e  . t e [0,1] 

while,  for a general failure function,    F (x) - exp{-Rp(x)} 

(6.4) dH'V) 
dt 

-ai*) 
F"1^) 

r
F(xJ 

! 

where    rF(x) - dRp(x)/dx 
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Thus, if w^ could plot the TQTT for any Q , we could Isolate those areas 

where r(x) was larger (smaller] than q(x) as those regions where the 

TQTT has slope less [greater] than unity. Constants of proportionality 

can be eliminated by plotting the scaled total Q on test transform 

(STQTT), H- (O/H- (1) , thus giving us a continuous increasing function on 

the unit square which intersects  (0,0)  and (1,1) .  And the closter Q(x) 

is to the form of R(x) , the closer the STQTT is to the straight line 

(obtained for the exponential distribution with the conventional total time 

on test transform). 

The empirical usefulness of this for identification can be seen from 

the following.  Suppose we have observed a censored life test for a sample 

of  N items from the proportional hazard family with fixed, but unknown 

6 , say F(x) - P(x | 6) , and there are C failures.  The empirical life- 

time distribution,  Ff,(x) , can be obtained from the ordered complete 

samples  (x^ < x^ ... x^} 

0 ^ X < Xl:N 

Fc(x) "<Ji/C xi:N < x < xi+1:N ; 

XC:N - x 

however this is unlikely to be of direct use because of the small size of    C 

Suppose we plot instead the empirical    Q   on test ratio 

TQT(x.   N,x2 „,   ...,  x       ) 
(6.6) EQTR(i  |  V)  - TQT(X

1-N
X

2-N ^5- mux1:N,x2:N xC:N; 

versus  (i | C)  (i - 1,2, ..., C) , where TQT is the statistic defined in 

(3.A).  Since 
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F^C/N) 

(6.7)  ^ TQT(x1:N.x2:N xc.N) -  y   [1 - Fc(u)]dQ(u) 

one can show, following [1], that 

(6.8)        EQTR(i | V)  - S-liii     (0 < t < u < 1) 

uniformly as N -•■ • , and 1/N ■+ t , C/N -♦• u .  In other words, the empirical 

Q on test ratio tends to look like the scaled total Q on test transform 

as the number of data points increases, and thus can be used for model 

Identification merely by trying different Q functions, until a satisfactory 

straight line approximation is obtained.  Naturally, for any finite sample, 

there will be fluctuations in the ratio (6.6); Barlow and Campo [1] give 

results for the exponential case using total time on test, which should 

also be useful once an approximate form Q has been found. 

Perhaps it is appropriate at this point to compare our procedure for 

nonexponential model identification with that set forth in Barlow and 

Campo, assuming always there is sufficient data.  In their approach, they 

would plot empirical ratios corresponding to the scaled total time on test 

(e.g. (6.6) and (3.A) with Q(x) ■ x); departure from the exponential would 

show up as a departure from a straight line.  Special characteristics, 

such as IFR, IFRA, NEU, etc. would be apparent from inspection, and then 

through the use of families of transparent overlays on the unit square, 

the final distribution would be chosen visually. 

In our approach, we propose to try successive forms for Q , plotting 

the empirical ratio (6.6) each time.  Regions of departure from a straight 

line, together with (6.4), are supposed to suggest new empirical modifica- 

tions in Q , which are carried out until the EQTR is apparently a straight 

line. 
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7.  EXAMPLE 

Figures 1 through 5 show various empirical Q on test ratios, based 

on 107 samples for the right rear brake of a D9G-66A caterpillar tractor 

given by Barlow and Campo [1]. Three prototype failure functions, 

115       2 
Q(x) - x , x   | and x  are given In each plot, from top to bottom 

respectively. 

Figures 1, 2, and 3 illustrate the effect of varying the number of 

complete samples, with Figure 1 showing the original 107 lifetimes, and 2 

and 3 showing the curves with only 5A and 27 lifetimes, selected at random. 

Clearly the variability Increases with decreasing data, although 

Q(x) = x '   Is always the best of the functions chosen.  Figure 1 suggests, 

via (6.A), that a slight modification of the failure function 

between 0-0.05 and 0.65-1.00 would give a better fit. 

Figures A and 5 show the effect of Incomplete life data by censoring 

the original 107 samples at the 5Ath and 27th lifetimes, respectively. 

Again, the model comparison Is remarkably consistent, even with small 

duration tests, although the discrimination (separation between the plots) 

Is less with censored data. 

;'; 
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FIGURE 1:     EMPIRICAL    Q    ON TEST RATIO.     107 COMPLETE SAMPLES,  RIGHT REAR 

BRAKE [BARLOW AND CAMPO]       Q(x)   • x1   , x1'3  , AND    x     . 
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. 

J.OP- 

0.9:- 

F1GURE 2:     EMPIRICAL    Q    ON TEST RATIO.     54 COMPLETE SAMPLES,  RIGHT REAR 
115 2 

BRAKE   [BARLOW AND CAMPO].     Q(x)  = x     ,  x  '     , AND    x     . 
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FIGURE 3:     EMPIRICAL    Q    ON TEST RATIO.     27 COMPLETE SAMPLES,  RIGHT REAR 

115 2 
BRAKE   [BARLOW AND CAMPO].     Q(x)   - x     ,  x  '     .AND    x    . 



20 

i.oo-l 

o.^-l 

0.8t)-| 

0,70-1 

0.60-1 

0.50-1 

O.KO-I 

0.30-1 

0.20-1 

0.10-1 

i.* 

t f 

i 1 

♦   T 

I.   ► 

«   ♦ 

/ T 

♦   ♦ 

.    » 

0.00-t   I *  >1 i "ill 

0.0 0.1 0.1 o.l 0.' o.l 0.1 0.\ 0.1 6.1 1.0 

FIGURE 4:    EMPIRICAL    Q    ON TEST RATIO.    107 SAMPLES,  CENSORED AT 54TH SAMPLE, 

RIGHT REAR BRAKE [BARLOW AND CAMPO].     Q(x)  - x1 , x *     , AND    x    . 
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S ' FIGURE 5:  EMPIRICAL Q ON TEST RATIO.  107 SAMPLES, CENSORED AT 27TH SAMPLE, 

RIGHT REAR BRAKE [BARLOW AND CAMPO].  Q(x) - X1 , X '  , AND X . 
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8.     DATA FROM SEVERAL BATCHES;  ESTIMAIION OF HYPERPARAMETERS AND MODEL 
IDENTIFICATION 

The use of  (6.6) to identify    Q   depends on hsvlng sufficient complete 

lifetimes for a  fixed value of    0  .    However, a more usual situation would 

be that we have a moderate number of samples  from several production runs, 

each with different values of    6  . 

If we pool  the data,   then the resulting mixed distribution will be 

given by  (5.6),   from which we see that  it  is difficult  to extricate the 

identification of    Q    from the estimation of    C      and    Q    .     In fact,  the o o 

TQTT of    P(x)    with respect to the correct    Q(x)     is not a straight line, 

but  is 

(8.1) H "(t) 
C    - 1 o 

1 -   (1 - t) 
C -1/C 

which  Is straight only  for    C      large.    A normalized plot of this function 

is shown in Figure  6. 

However, maximum likelihood estimates    C     ,  Q      can be reliably obtained 
o   o 

from a large amount M of pooled data, given Q .  First, Q  is found so 

that the following two sums are equal. 

(8.2) 
M Q(x1) 

Qo + Q(xi) 

M 

I in 
1-1 

1 + 
Q(x1) 

and then: 

(8.3) Co - M/I(Qo) . 

There remains the problem of identifying Q .  We suggest the following: 
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FIGURE 6:     NORMALIZED TOTAL    Q    ON TEST TRANSFORM FOR THE GAMMA- 
MIXED PROPORTIONAL HAZARD FAMILY WITH THE CORRECT 
Q(x)   ,  FOR VALUES OF THE HYPERPARAMETER    C    - 2,4,8 
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(1) For each value of    d     (production run),  plot  the empirical 

ratio  (6.5)  for the appropriate number of completed lifetimes; 

(2) Connect these points by straight lines, or other reasonable 

curves; 

(3) For various values of  the abscissa,   find  the  average value of 

the ordlnate over all runs. 

Even though the Individual  curves may vary because of  the  few samples 

per batch,  the average STQTT should more nearly reflect  the  theoretical 

transform curve.    One then varies the form of    Q  ,   as before,  until a 

satisfactory fit is obtained. 

Figure 7 shows this procedure for 5  runs, with 10 complete samples in 

each run, when    R(Q    (x))  •■ x  '     .    The raw data  is  shown unconnected,  the 

average values over all  runs  for    t - 0(0.1)1.0    are  connected by straight 

line segments, while the theoretical STQTT is the  curvilinear line.     Limited 

computational experience with other simulated data gives similar results, 

surprisingly smooth when averaged over all runs. 
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i.co-f. 

FIGURE 7: SIMULATED TQT DATA FROM PROPORTIONAL HAZARD FAMILY WITH 

R(Q"1(x)) - x1,5 .  FIVE RUNS, 10 COMPLETE SAMPLES FROM EACH 
RUN, COMPARING RAW DATA, AVERAGE CURVE, AND THEORETICAL CURVE. 
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9.     EXTENSIONS 

A natural extension to  (3.1)  Is to consider the competing hazard 

family 

(9.1) 

Pc(x  |   6)  - exp [- X w] 
p(x   |  6 ) - p^ eiqi(x)j expj-^ e^Cx)! 

Here the    Q.   , and their derivatives,    q.   , are prototype failure con- 

stituents which are competing in an unknown mixture specified by parameters 

0i.0o,   ...,  6     ,   subject to a known m-dimensional prior density.    For 
i    2 m 

Instance, with m ■ 2 , one constituent might be random, q,(x) = 1 , and 

the other IFRA, Q2(x)/x f in x . Unfortunately, the likelihood Is now 

more complex; corresponding to  (3.2), we have for    m » 2 

p(x1,x2 xN  ; C   I   öj.Öj^ 
N! 

N 

{"      L)'   i-C+1 1 

(9.2) 

n     (6 q   (x )  + 9 q  (x )]'e 
[1-1      ^ ■L    1 

) -e1TQ1T(P)-e2TQ2T(P) 

> 

i 

where    TQ.T and TQ.T refer to the two possible test statistics.    In place of 
Q 

6  , we have C terms corresponding to the possible powers of 6. and 

0  . The term in inner braces is proportional to 

i.C-i 
I   Pi0»eft 

where 

.  
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(C - 1)  terms 

01 X.iX„i••.,X- 

and K Is adjusted so that )  v.(V)  ■ 1 • The complexity for general 

is easily visualized. 

A convenient prior consists of independent gammas: 

/ C .-1 -Q .O.W C .-1 -Q .e.x 
(9.4)  P(01.62 | C^.Q^.Q^) - (e °1 e »1 % °2  .  ^ 2) ; 

we see that  the posterior-to-data density is a mixture of    C    terms: 

(9.5)    p(61,e2  \ V)  -    I    P1(P)-p(ei,e2   |  Col+i,Qol+TQ1T(D);Co2+TQ2T(P)) 

from which,  for example,  the updated means can be obtained, e.g.. 

(9.6) til.   \  V) -    I    p.(P) 
1 i-1 

C . + i ol 

ColIE{ei)l      + TQ1T(P) 

Although these Bayesian calculations are more complicated than before,  they 

are easily computerized for    m ■ 2    or    3 . 

Another possible extension is to a aompeting lifetime model family 

m 
Pc(x   |  6)  -    I    n    exp  (-9 Q (x)l 

i»l 
(9.7) 

m 
p(x  |  6) -    ^    it e.q.(x)  exp  [-6 Q (x)] 

1M1    i i i 
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Here th 
n 

e    ii>0    (i ■ 1,2,  ..., m)  |    I   ifj ■ I , «re 
1 ~ J-l   J 

random variables, 

with, say, a Dlrlchlet prior distribution, and the 6  may be fixed or 

subject to a joint or Independent prior. What happens. In general. Is 

that, as data Is received, the posterior estimates of the v      change 

(along with the 6.) , thus tending to select the "correct" model. 

Unfortunately, even for m ■ 2 , this approach leads to terms In which 

varying numbers of the Q. are summed, eliminating the usefulness of the 

TQT statistic. 

However, It Is possible to extend the class of priors somewhat by 

using a competing prior model family 

D 
(9.8)        p(e) - I    TT p (9) ; PC(x 1 e) - exp {-9Q(x)} ; 

1-1 

where the    n.    are either fixed,  or have their own prior.     Here the size 

of the computation remains fixed, and the TQT changes the weights    IT 

as a  function of the data.     For instance,  if the    p. (6)  ■ p(e   1  C ^QQJ) 

ar> gamma, and the initial    it,    are fixed, then posterior to the data 

we have from (3.2): 

(9.9) i^CP) K«TT 

r(c . + c) 
oi ""oi 

i    r(c .) c  +c • 
lQoi + TQT(0)] 

V 

where    K    is chosen so that    ][ Tt   (P) - 1 .    Of course,  this approach 

requires much more effort in estimating the hyperparameters. 
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